文章摘要
舒思京,孟俊敏,张 晰,刘根旺.基于简缩极化SAR的溢油检测与分类方法[J].海洋科学进展,2021,39(1):146-157
  
DOI:10.3969/j.issn.1671-6647.2021.01.015
摘要点击次数: 1931
全文下载次数: 1550
基于简缩极化SAR的溢油检测与分类方法
Oil Spill Detection and Classification Method Based on Compact Polarization SAR
作者单位
舒思京1,2,孟俊敏1,2,张 晰1,2,刘根旺1,2 1. 自然资源部 第一海洋研究所,山东 青岛 266061
2. 自然资源部 海洋工程技术创新中心 山东 青岛 266061 
中文摘要:
      针对简缩极化SAR在海上溢油的检测与分类应用开展研究,利用欧式距离全面分析了简缩极化SAR的36种极化特征在溢油检测与油膜分类中的性能,发现简缩极化特征中的奇次散射系数的溢油检测性能最好,简缩极化熵的疑似溢油鉴别性能最好。在此基础上,提出了结合二叉树原理的简缩极化SAR溢油检测与油膜分类算法,并分析了RADARSAT-2和SIR-C全极化溢油数据模拟的简缩极化数据。结果表明,此方法对溢油的检测精度可达95.67%,对于疑似溢油的识别精度可达95.71%,证明了简缩极化SAR在溢油检测与分类中具有较好的应用前景。
中文关键词: 溢油检测  简缩极化SAR  油膜分类
英文摘要:
      The application of compact polarization SAR in the detection and classification of oil spill was analyzed in this study. First, we perfomed a comprehensive analysis of the performance of 36 features of compact polarization SAR in oil spill detection and classification by using Euclidean distance, and found that the odd-order scattering coefficient had best performance on oil spill detection, and the compact polarization entropy achieved better performance on oil spill lookalikes identification. Then, we proposed a compact polarization SAR oil spill detection and classification algorithm based on the binary tree idea, and the fully-polarimetric data of RADARSAT-2 and SIR-C were used to reconstruct the reduced polarized data and experiments. Results showed that the detection accuracy of oil spill detection is 95.67%, and the identification accuracy of oil spill lookalikes can reach 95.71%, which is 2% higher than the classic Wishart supervised classification method, indicating that the compact polarization SAR has a better application prospect in oil spill detection and classification.
英文关键词: oil spill detection  compact polarimetric SAR  oil spill types classification
基金项目:国家重点研发计划——(2017YFC1405300);国家自然科学基金项目——基于无人机紫外与SAR的溢油遥感监测方法研究(41706208)
查看全文   查看/发表评论  下载PDF阅读器
关闭

分享按钮